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0.1 This paper considers the mathematical principles of lattice

theory oriented toward the theory of computation. This relatively

new direction can be traced back to the explanation of recursive

definitions as fixed point of monotonic (actually continuous)

operators. The usual operational explanation (Kleene ’s first

recursion theorem) is replaced by a pure lattice theoretical

existence theorem.

Another problem for which the lattice approach provided

a s i gnificant clarification was the so-called selt-application of

functions. Introduced first in some formal systems of A-calculus

and cornbinatory logic it was accepted later as a proper procedure

for the definition of algorithms in programming languages, the

implication being then that there existed a clear operational

meaning for such procedure. Again the discovery by Scott of

models in which such self-application was available provided a

mathematical meaning for an operational notion. But it is important

to notice that—contrary to the situation for recursive definitions—

it is not clear whether the mathematical notion of self—application

corresponds to the operational.

More recently (see [71) the lattice approach has been found

useful for the definition of data structures. In all these

applications a number of constructions appear frequently:

retractions, projection, representations.
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0.2 We attempt here a systematic treatment of the lattice

theory involving the definition of data structures. We consider

monotonic rather than continuous functions and show that a number

of results appear quite natural in this more general setting .

Then we try to characterize whenever possible the situation

arising by assuming continuity.

0.3 Most of the notation we use is standard in lattice theory

or in the work of Scott. What we call here a lattice is usually

called a com plete lattice. We use the shorter expression only

because this is the only type of lattice considered in the paper.

The name representation originates from Reynolds (see for instance [4])

who actually refers only to what we call continuous representation.

It should be noted that the general notion of representation is

quite old and apparently was introduced by Ore in [3] as Galois

connection. The formulation is not exactly the same but it is

clear that the notions are equivalent. In Everett [2] the

expression Galois correspondence is used.

In place of continuous lattice we use injective lattice;

a term which is also used by Scott. Since the qualification

continuous is used in many places in this paper we think it is wiser

to avoid using the same term with a different connotation . Finally

compactly generated lattices are known from Crowley [11 and appear

as algebraic lattices in Scott [71 with some extra restrictions.

2
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1. Definitions and notation.

1.1 Domains. A domain is a non empty set D with a partial order

on D. Such partial order will be denoted .in the form x c y. We

use D to denote both the set and the partial order. If D’ is

another partial order we write x c 1 y to indicate the relation in

0’; but if there is no danger of confusion we may write just

x E y .

If D is a domain and D’ is a subset of D then we consider D’

as a partial order where the order relation is the restriction to

D’ of the order relation in D. We call then D’ a subdomain of D.

If D is a domain and X c D is such that X is not empty and

whenever x £ X and y c X there is v c X such that x c v and y c V

then we say that X is a directed subset of D.

1.2 Lattices. If D is a domain and X c D then the notion of upper

bound of X (u.b. of X) and lower bound of X (l.b. of X) is defined

in the usual way. In case there is a least upper bound of

X (l.u.b. of X) it is denoted Ux; and in case there is a greatest

lower bound of X (g.l.b. of x) it is denoted flx. The domain D

is called a lattice in case Ux and f lx exists for every X c D. It

is well known that in order for D to be a lattice it is sufficient

that Ux (or of Ux) exists for every X C D.

If D is a lattice, D’ is a subdomain of 0 and 0’ is itself a

lattice then D’ is called a eublattice of D. Notice that this

does not mean that for any X c 
~~~‘ the 1.u.b. in 0 is the same as the

l.u.b. in D’. Whenever we have to distinguish we shall note by

3
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tJ’x and fl’x the l.u.b. and g.l.b. of X in D’, respectively. Note

that Ux = U’x if and only if Ux £ D’ ; and similarly for fix.
A sublattice of D’ of D is said to be U-closed in case that for

every X c D’ we have Ux e D’ and is said to be fl-closed in case

that fix £ D’ for every X c 0’. Finally if 0’ is a sublattice of

D such that whenever X c D’ and X is directed then Ux £ D’ we say

that D’ is a sublattice of finite character in D.

In a lattice D the element UD is denoted by T and the element

flD is denoted by I.

1.3 Functional domains. Let D and D’ be lattices. Then 0 — - - - -- D’

denotes the set of all functions which are defined for every x i D and

the value is always in D’. If f and g are elements of D — -‘ 0’

we define f ~ g to hold exactly when f(x) ~ g(x) for every x c 0.

This is easily seen to be a partial order . Furthermore D

is a lattice where the lattice operations are defined as follows.

If F c D D’ then

UF (x) = U{f(x) f £ F) -

flF (x) = fl{f(x) f c F)

1.3.1 A function f £ 0 I D’ is monotonic in case that when-

ever x 
~ 

y then f(x) ~ f(y). The set of all monotonic functions is

denoted by D m ‘ D’ and it is both U-closed and fl-closed

sublattice of D D’.

1.3.2 If f £ 0 * D’ and X C 0 we put f(X) = {f(x) : x £ x } .

The function f is continuous in case that f ( L J X )  = Uf(x) whenever

X c D is directed. The set of all continuous functions is denoted

4
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C . . . mD 0’; it is a u-closed sublattice of D A 0’.

1.3.3 In case f (IJX) = Uf(x holds for arbitrary ~ r D the

function f is called additive . The set of all additive functions

is denoted D a -. D’ and it is a U-closed sublattice of

A D I

1.3.4 Finally if f(flX) = flf(x) for arbitrary X c 0 then f is

a coadditive function. The set of all coadditive functions is denoted

ca , . . inD . It is a fl—closed sublattice of D D’.

1.3.5 We note the following property of functions f c D —, D’.

If D1 
c D is U—closed (fl—closed) sublattice of D and f is

additive (coadditive) then f(D1) is U-closed (fl-closed) sublattice

of D’. Now let us put R(f) f(D). Then R(f) is U-closed

(fl-closed) sublattice of D’ whenever f is an additive (coadditive)

function.

1.3.6 There are other classes of functions we may want to considei

but in general they do not form sublattices of D DI . If

f satisfies the condition that x 
~ 

y if and Only if f(x) ~ f(y)

then f is said to be strictly monotonic. If f is strictly nionotonic

then it is 1-1. Furthermore if R(f) is U—closed (fl-closed) (of

finite character) in D’ then f is additive (coadditive) (continuous).

If f c D D’ is strictly monotonic and onto then f is

called an isomorphisin of D onto D’. Such f is both additive and

coadditive. The inverse of an isomorphism is also an isomorphism.

Finally note the following property. If f is 1-1 and additive or

___  - --——.—- -—-- - - - - - —-.- - - - -  - - — ------ - —- 
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coadditive then f is strictly monotonic.

1.3.7 The identity function on a lattice 0 will be denoted by

or simply by I when there is no risk of confusion .

1.3.8 Composition of functions is defined in the usual way. If

f c D A D’ and g £ D’ -* D’’ then g o f c D 0’’.

All the lattices introduced in 1.3.1, 1.3.2, 1.3.3, 1.3.4, and 1.3.6

are closed under composition.

- : . _  
_~~~~~~~~~~~~



2. Retraction , closures and projections.

In this section we study sublattices of a lattice D induced

by monotonic functions satisfying some conditions. First we prove

some results that hold for arbitrary monotonic functions. If

f € D * 0 we put Fix(f) = {x : f(x) = x}.

2.1.1 Lemma . Let f c D m D and put D1 = {x : f(x) c x}.

Then D1 is fl-closed sublattice of 0. If f is continuous then

is of finite character in D.

Take X ~ D1 to show fix c D 1. For every x £ X we have

fix c x hence f (flX ) ~ f(x) E x. It follows that f (flx) ~~. fix,

so fix £ D1. Assum e now that X c D
1 
is directed . Then

f (UX) = Uf(x) ~ U x .  Hence U x  £ D1.

2 .1 .2  Lemma . Let f £ D -‘ 0 and pu t D2 = (x : x c f ( x ) } .

Then 02 is U-closed sublattice of 0.

This is the dual of the corresponding part in 2.1.1.

2.1.3 Corollary. Let f ~ 
m D and and D

2 
be defined

as in 2.1.1 and 2.1.2. Then Fix (f) = D1 n 02 is U-closed

sublattice of D1 and also fl-closed sublattice of 02. If f is

continuous then Fix(f) is of finite character in D.

The first part follows from ~.l.l and 2.1.2. If f is

continuous and X c Fix(f) is directed then f(UX) U fx Ux.
m

2.2.1 A functionfcD ‘Dsuch t h a t f o f = f i s called a

retraction in D. Note that in case f is a retraction then

Fix(f) = R(f). If f is a retraction such that I c f then f is

7
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called a closure in D. And in case that f rz I then f is called

a project ion in D. I f f is a retract ion (closure ) (projection)

in D and f is continuous then f is a continuous retraction (closure)

(projection) in D.

2.2.2 Theorem. If f is a retraction (closure) (projection) in

D then R(f) is a sublattice (fl—closed sublattice)(U-closed

sublattice) of D. If f is continuous then R(f) is of finite

character in 0.

These are easy consequences of 2.1.1 , 2.1.2 and 2.1.3.

2.2.3 Theorem . Let f be a closure in 0 such that R(f) is of

f inite character in D. Then f is continuous.

Take X c D directed , to show F ( U X )  E Uf(X). Note that f ( X )

is also d irected and since f ( X )  c R( f ) we have f ( U f ( X ) )  = U f ( x ) .

Now if x X then x ~ f(x) ~ Uf(x) , hence Ux c U f ( x )  so

f (UX) E U f x .

2.3 I f  0’ is a sublattice of a lattice 0 such that there is

a retraction (closure) (projection) f and D’ = R(f) then D’ is

called a retraction (closure) (pro jection ) in 0. In case f is

continuous then it is called a continuous retraction (closure)

(projection) in D.

2.3.1 Theorem . If D’ is a sublattice of 0 then D’ is a retraction

:: : If D’ is fl-closed (U-closed ) then D’ is a closure (projection)

There are many retractions f such that D’ = R(f). The maximal

one (in the ordering of D -
~ D) is the function

8
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f1(y) = fl’~ x £ D ’ : y xi

which is easily seen to be a retraction such that D = R ( f
1
). If

D’ is fl-closed then f~ is a closure. The minimal retraction is

the following:

f2(y) = U ’ {x  £ D’ : x y }

and in case D’ is U—closed f
2 is a projection.

2.3.2 As mentioned above in general there are many retractions

f such that D’ = R(f). But in case D’ is fl-closed (U—closed)

the closur e (projection) f such that D’ = R(f) is unique.

Note also that from 2.2.3 it follows that D’ is a continuous

closure in 0 if and only if 0’ is fl—closed and of finite character

in D.

2.4 We consider now some examples. If D is a lattice and v c D

then [v) = {x : v ~ xi and (v i  = {x : x c. vi . We denote by

r 
D, D 

cr 
~ D, D 

ci -
~ D, D 

ccl -~ D, 0 
p t 0 and

D CP -t D the set of all retractions, continuous retractions,

closures, continuous closures, projections and continuous projections

in D, respectively.

2.4.1 The sets [‘1) and (vi are both of finite character in D. The set

[v) is fl—closed hence it is a continuous closure in D. The set

(vJ U-closed so it is a projection in 0.

2.4.2 Let q(f) f 0 f be a function on functions f € D ~ 0.

Clearly q c (D — 0) m ID m 
‘ D) hence the set D1 =

c 0 _m ‘ D : q(f) c f} is fl-closed in 0 —‘ D. It follows

9
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.

that D cl D Di n [I) is also fl-closed in D -~ D

hence it is a closure in this set.

2.4.3 A similar argument shows that D ‘ D is a proj ection

m
m D

2.4.4 We may restrict the operation q(f) to continuous f. In

C C Cthis case we have q £ (0 A D) ‘ (D ~ D). Now the

set D1 
= ~f £ D D : q(f) ~ f }  is not only fl-closed but also

cclof finite character. Hence 0 — 0 = D
1 

n [I)  i s  a continuous

closure in D c 
• 0.

2.4.5 The dual argument shows only that D cp 
‘ D is a projection

m D  c • D .

2.4.6 The argument given in [7], Theorem 5.5 shows that the unique
c ccl

continuous closure V in D D such that R(V) = C * D

is given by the following expression :

V(v) = Ax. Y(Ay. x u f(y))

where Y is the fixed point operator.

10 
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3. Connections and Representations.

In the preceding section we have introduced several relations

between lattices assuming in general that one lattice is a sub-

lattice of the other. In applications we have lattices which are

not so related and the obvious approach is to extend the notions

via isomorphisms. What we shall do is rather to general ize the

relations and show that they can be reduced to the originals up to

isornorphism. The generalizations take the form of connections

and representat ions between l a t t ices , and provide an ex tremely

useful tool to study the relations. It is essentially a

f actoriza tion technique in which d if f e r e n t  fac tors represent

different aspects of the total relation.

3.1 Let 0 and D’ be lattices. A connection between D and 0’ is

a pai r of func t ions  ( f ,g) such that f c D m -~ D’ , g £ 0’ —
~~~

-—---- D,

f o g o f = f , and g o f o g = g. Note that the two last conditions

are satisfied in case f o g = I or g o f = I. Note also that in

case (f ,g) is a connection between D and 0I  then (g, f) is a

conn~ction between D’ and D.

If follows immediately from the definition that whenever (f,g)

is a connection between 0 and 0’ then g 0 f is a retraction in D

and f 0 g is a retraction in D’.

3.1.1 Theorem. Let (f,g) be a connection between 0 and D’. Then

f restricted to R(g) is an isomorphism of R(g) onto R(f), and g

restricted to R(f) is the inverse isomorphism of R(f) onto R(g).

11 
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Since R(f) = R(f  o g) it follows that f restricted to R(g)

is onto R(f). By assumption f is monotonic ; so we need to prove

only that whenever y
1 

E R ( g ) ,  y
2 

E R(g) and f(y
1
) ~~~. f(y2) then

~ 
y2. Let g(x1) = y

1 
and g(x

2
) = y2. Then

y1 
= g(x1) = q(f(g(x1

))) ~ g ( f ( g ( x
2))) = g(x2) = y2.

3.1.2 Theorem . Let D and D’ be lattices; let D1 
be a sublattice

of D and D~ be a sublattice of D’ ; let h be an isomorphisin of

D1 
onto D~~. Then there is a connection (f,g) between D and D’

such that R(f) = ~~~ R ( g ) = D
1
, for x c f (x) = h ( x )  and for

y £ D~ g (y ) = h 1
(y).

We shall denote by U1 and fl 1 the join and meet operation
in D

1 
and D~ respectively. We define then f and g as follows :

f(x) = fl 1
{y c D~ : x c h 1(y)

g (y ) = U 1(x t D~ : h(x) 
~~~. ~~~

It is clear that R(f) c Dj~ and R(g) D~~. It is easy to verif y that

for x D1 g (h(x )) = x and for y c D~ f(h 1(y) ) = y, hence

f(x) = f(h 1(h(x))) = h(x) and g(y) = g (h(h 1 (y))) = h 1 (y) . We

have also

f(g(f(x))) = f(h~~~(f ( x ) ) ) = f ( x )

g(f ( g ( y ) )) = g (h (g ( y ))) = g(y)

3.1.3 Theorem. Let (f,g) be a connection between D and D’. The

following conditions are equivalent :

12
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i) f o g = I (g o f = I)

ii) f is onto D’ (f is 1—1)

iii) g is 1—1 (g is onto)

That i) implies ii) and iii) is clear. From f o g 0 f = f

it follows that ii) implies i), and from g 0 f 0 g = g that

iii) implies i)

3.2 A connection (f,g) between D and D’ is continuous in case

both f and g are cont inuous funct ions. In ca se f 0 g = I the

connection ( f ,g) is called a retraction of 0’ into 0 and it is

called a continuous retraction in case both f and g are continuous

functions. If there is a (continuous) retraction of D’ into D we

shall say that 0’ is a (continuous) retraction of D.

This notation is consistent with that of 2.2.1. For suppose

that f c 1) * 0 so we may consider f £ D m 
~ R(f). Define

g(y) = y for y c R(f), hence g £ R (f) m 
-. D. It follow that f

is a (continuous) retraction in D if and only if (f ,g)  is a

(continuous) retraction of R(f) into 0. The argument is straight-

forward but note that g c R (f) C D if and only if R ( f )  is

of finite character in D. Note also that in case R(f) is of finite

character in 0 and f ~ D 
C • R(f) then f c 0 C 

~ D.

3.3 A representation between lattices D and D’ is a pair of

function (f,g) such tha t f c D m D’, g C D’ 15 
• D, I c g 0 f,

and 1 o g I. A representation is a connection because from

I~~~ g o f  it follows that f c f  o g  o f a n d g c g  o f  og, and

from f o g~~~I it follows that t o g  o f c f  and g o f  o g c g .  

~
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The study of representations is facilitated by introducing

the following two operators $(g) and 4’(f)

• C (D’ m 
- D) m 

* (D ~‘ D’)

‘,U C (D lU DI) m , (0’ 15 D)

which are defined as follows:

• ( g)  = Ax. fl {y : x ~ g(y) I

= Ay. U{x : f(x) yl

It is easy to check that g ~ ‘P(~~(g)) and $(~~(f)) ~ f but

(
~~ ‘4’) is not a representation since neither • nor ~ is monotonic.
3.3.1 Theorem. Let £ C D—~—-— D’ and g c D’ m 

* D. The

following conditions are equivalent:

i) (f,g) is a representation between D and D’.

ii) For arbitrary x c D and y c D’ : f(x) c y if and only

if x c  g(y).

iii) •(g) = f and ij~(f) — g.

iv) f C D 
a -, 0’ and *(f) — g.

v) f ~ •(g) and i~ (f )  c g.

vi) g c D’ ca 
~ D and •(g) = f.

The implications from i) to ii) and from ii) to iii) are easy.

Assume that iii) holds to prove f is additive. Let X c D; then for

x c X we have f(x) ~ Uf(X). Since *(f) — g this means

x c g(Uf(x)). This holds for every x c x so Lix c g(Uf(x)). But

now since $(g) — f we have f([JX) c Uf(x). So f is additive .

14
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Assume now iv) holds to prove f (x) ~ 4(g) (x) for arbitrary

x u 0. I~roin 9(f) = g and the additivity of f we get f(g(y)) y

for arbitrary y £ D’. Now if x g (y) then f(x) y. It follows

that f(x) ~
Assume v) to prove vi). Consider Y ~ D’ . If y e Y then

fl g(Y) ~ g(y). Then from f ~ 4(g) it follows that f(fig(Y)) c. y.

Hence we have f ( f l g ( Y ) )  ~ flY and from 9(f) ~ g we get tha t

flg(Y) g(flY), so g is coadditive . In order to prove that

4(g) c f note that for arbitrary x 0 and the definition of 9 we

have x ~ 9(f)(f(x)); hence from 9(f) ~ g we have x E g (f(x)). But

this implies that 4(g) ~ f.

If we assume vi) then from 4(q) = f we get immediately that

f ~ g ~ I. Us ing also the coaddit iv ity of g we get

g(f(x)) = fl{g(y) : x ~ g(y) }

hence I ~ g 0 f .

3.3.2 Some consequences of the definition and Theorem 3.3.1 are

the following . If (f,g) is a representation between D and D’ then

g 0 f is a closure in 0 and f 0 g is a projection in 0’. Hence

R(g) = R(g 0 f) is fl-closed in 0 and R(f) = R(f 0 g) is U-closed
in 0’. By 3.1.1 f restricted to R(g) is an isomorphism onto R(f).

Furthermore the function f is additive and the tunction g is

coadditive and one of them determines uniquely the othe~~.

3.3.3 Theorem . Let D and D’ be lattices. Let D
1 
be a fl—closed

sublattice of 0 and Di be a U-closed sublattice of D’. Let h be an

isomorphism of D1 
onto D~ . Then there is a unique representation

15



(f ,g) between D and D’ such that R (f) ~~~ R(g) = D
1
, for

X £ D
1 

f ( x ) = h ( x )  and for y £ D~ q ( y ) = h ’( y ) .

We define f and g exactly as in Theorem 3.1.2 and we need

only to show that I ~ g a f and f a g ~ I. Since Di is U-closed

in D’ it follows that h € D
1 

a D’; in the same way since D
1

is fl-closed in 0 we have h 1 
~ D~ 

ca D. Hence

f(g(y)) = h(g(y)) = U { h ( x ) : X £ D
1 

A h(x) ~

so clearly f (g ( y )) y. Also

g ( f ( x ) )  = h
1 (f(x)) = f l {h~~~(y )  : y £ D~ 

A x h 1( y ) )

so clearly x ~ g (f ( x ) ).

To prove the uniqueness note that if (f 1,g1
) is another

representation such that f(x) = f
1
(x) for x r D~ and g(y) = g1(y)

for y £ ~~~ then from x c g(f(x)) we get f1
(x) c f1

(.
~j(f(x)) =

f(g(f(x))) = f(x) and similarly for the function g using f(g(y)) c y.

3.4 A representation (f,g) between D and D’ is continuous in case

g C D’ C 
• D. If g is 1—1 the representation is called a closure

of 0’ into 0 and D’ is a closure of D. If g is continuous and 1-1

then (f,g) is a continuous closure of D’ into D and 0’ is a

continuous closure of 0. If f is 1-1 then the representation is

called a projection of D into 0’ and D is a projection of 0’. In

case f is 1—1 and g is continuous then (f,g) is a continuous

projection of 0 into D’ and D is a continuous projection of 0’.

Note that Theorem 3.1.3 applies to representations.

- 
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3 . 4 . 1  This notation is consistent with the notation of 2.2.1.

For let f * 0 —~~~
----—-‘ 0 so we may consider I c D in 

R(f).

Define q (y) = y for y £ R ( f )  so q r R ( f )  m 
0. Then we have:

i) f is a (continuous) closure in 0 if and only if ( f ,g) is a

(continuous) closure of R(f) into D. ii) f is a (continuous)

projection in D if and only (g,f) is a (continuous) projection

of R(f) into D.

3.4.2 The lattices that are closure (projections) of a given

lattice are characterized by 3.1.1 and 3.3.3 as exactly those

lattices which are isomorphic to a fl—closed (U-closed ) sublattice

of D. We can characterize the continuous closures of 0 as follows.

3.4.3 Theorem . A lattice 0’ is a continuous closure of a lattice

D if and only if D ’ is isomorphic to some fl-closed sublattice

of 0 of finite character in 0..

This is essentially a consequence of Theorem 2.2.3.

3.5 Let (f,g) be a representation between 0 and D’ . We can define

two operators c(h) and T(j) where h £ D 
in D and j ~. D’ D’

a ( h )  = f o h 0 g

t (j) g o j  o f

Then it can be easily checked that (o , T)  is a representation between

D • D and D’ • D’ . We call (a ,T) the representation

induced by (f,g).

p.

I 
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Assume now that (f ,q) is a continuous representation between

D and D’. Then whenever h and j are continuous (J(h) and 1(j) are

also co n t i n uous. Fu r thermore it is possible to check th at is

also continuous when restricted to continuous functions. This

means that (o,T) is a continuous representation between 0 C 
• D

and D ’ C 
~ 0’. It is called the continuous representation

induced by (f ,g).

3.5.1 Theorem . Let (f,g) be a (continuous) representation between

D and 0’ and let (0 ,11 be the (continuous) representation induced by

( f ,g). If j is a (continuous) closure in 0’ then T (j) is a

(continuous) closure in D and the func tion g maps R(j) onto

R ( T ( j ) )

From I c~ j it follows easily tha t  I ~ r (I) ~ ‘(1). Fur thermore

‘r(j) o i(j) = g o j 0 f 0 g o j 0 f c g o j a j a f = g o j o f.

To prove that g maps R(j) Onto R ( T ( j ) )  take y i R(j), so j(y) = y.

Then t(j)(g(y)) = g(j(f(g(y)))) c g(j(y)) = g(y), hence

g(y) £ R(r(j)). Conversely let x £ R(-r (j)) then j(f(x)) c R(j)

and g ( j ( f ( x ) ) )  = T(j)(x) = x.

3.5.2 Theorem. Let (f,g) be a (continuous) representation between

D and D’ and let (a ,i) be the (continuous) representation induced

by (f,g). If h is a (continuous) projection in 0 then o(h) is a

(continuous) projection in D’ and the function f maps R(h) onto

R(o(h)).

This is the dual of Theorem 3.5.1 and the proof is similar.

18
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Note that in the situation of Theorem 3.5.1 in case (f,g)

is a closure and j is a closure in 0’ then g is an isomorphism of

R(j) onto R(i (j)). Similar remark for Theorem 3.5.2.

3.6 We shall consider now some examples of these notions. If

0 is a set then P(D) is the power set of D considered as a lattice

under the inclusion relation .

3.6.1 Let D be some lattice and D
1 

c D be some subset of D. We

can define a representation (f ,g) between P(D
1) and D as follows :

for X - D
1 

define f ( X )  = Ux and for y c D define

g(y)  = {x e D1 : x ~ y}. This representation is a closure if and

only D1 is a set of generators for D, namely in the case for every

y £ D there is some X c D
1 such that y = Ux. Also (f,g) is

continuous if and only if every element x £ D1 satisfies the follow-

ing condition : if Y c 0 is directed and x r Ui then there is some

y £ Y such that x c y. An element like this will be called compact

in the next section.

3.6.2 If D
1 

c D note that P(D
1
) = (D

1
] in P(D) (see 2.4) so it

is U-closed in P(D). The corresponding projection is

f ( X )  = X a D
1 

for X c 0 and it is a continuous function so P(D1
)

is a continuous projection in P(D). Since P(D1) is not fl-closed

it is not a closure in P(D); but it is actually a continuous closure

of P(D) given by the closure (f,g) where I is defined above and

g (Y )  = Y u (0 - Dl) for Y c D
l~

19 
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3.6.3 Let D be a lattice and consider the function

CK c D — — (D —--——- D) defined K(y) = Ax.y. This function is

both add iti ve and coaddi tive , and 1-1. Hence (K, (K)) is a

projection of D into 0 C 
• D. Since y (K) ( j )  = i LL) it follows

that the projection is continuous. On the other hand (0(K) ,K) is

a Continuous closure of D into D C - D. It is easy to check

that 4(K) (j) = j (T)

3.6.4 I~~t K’ n D ---- -—-—~ (D- —--
~
—-—

~ 0) he defined as follows:

K’ (y) (x) = J in case x = j j  K ’ (y) (x) = V in case x 
~ 
j. This f un c t i ’~-

aga i n is both addi tive , coadditive and 1—1. Hence (K’ ,9(K’)) is

a (continuous?) projection of 0 into D~~~ D and (4(K’),K ’ )  is a

cont~ nuc,us closure of D into D 
a 

0. Also ~- (K ’)(j) = j(J).
3.6.5 Consider the lattice P ( u ) where w is the set of non-negative

integers. The function graph £ (P ( w )  C P ( w ) ) P (~~)

defined in [7J is 1-1 and both additive and coadditive. It follows
-- 

that (4(graph), graph) is a continuous closure of P(w) C 
-. P ( u )

into P(w), and (grap h,9(graph)) is a projection of P ( w )  C 
~ P (u )

into P(w). We shall show later that it is impossible to improve

the latter relation to a continuous projection.

3.6.6 As a final example we define the following continuous closure

in P(w). f(X) = {x : x + 1 ~ X} and g(Y) = {0l u {x + 1 : x £ ii.

This transformation is used in the definition of E~~ 
in [71, page 619.

4.1 Injective and compactly generated lattices. In this section

we consider retraction , closures and projections involving lattices

satisfying special conditions. These conditions amount to requiring

20
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that every element in the lattice is the join of elements that

are compact; in some cases we require the compact ness proper ty

to be absolute, in others only relative to the element generated .

4.1.1 Let D be a lattice and let u and y be elements of D. The

element u is compact relative to y in case that whenever X D

is directed and y ~ Ux then there is some x c X such tha t

u c x. We use the notation u y to denote that u is compact

relative to y. An element x D such that x x holds is called

compact.

We def ine the following sets. If y L 0 then

B~~(y) {u : u <y} and CD
(y) = { x  : x is compact and x ~ y }.

The set C
0 

= C0(T) is the set of all compact elements in D.

4.1.2 We note several properties of these notions that follow

easily from the definitions. i) the relation < is transitive ;

ii) if u <y then U ~ y;  iii) if u <y, V c u and y c~ x then v

iv) C
D
(Y) C B

0
(y) ; v) C

D 
r D C P ( D ) ; v i )  B

D 
c 0 —---

~
-- P ( D ) .

Note that the relation < is equivalent to the similar
notated relation defined in [61 only for  the lattices called

continuous in that reference.

4.1.3 A lattice D such that for every y ~ D y = UB
D
(y) is called

injective. In case y = UC0(y )  for every y D the lat tice is

called compac tly generated. Clearly a compactly generated lattice

is injective . The lattice D is <-well founded in case that

there is in D no incinite sequence x1,x2,. ,X ,... such that

x <x and x ~~x .
n+l n n n+1

21
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4.1.4 Theorem . If a lattice D is injective and <-well founded then

it is compactly generated.

Assume D is not compactly qenerated and let D
l 

= : y ~ Lic0(y  } .

Let y be a minimal element in D
1 
relative to <. Since y = LJBD (y)

there is at least one x c BD
(y ) such tha t x 

~ 
Dl

. Since x 
~ 

y

this contradicts the minimality of y.

4.1.5 We give some examples of these notions. Let R be the set

of all real numbers w ith the usual order and two extra elements

J and f. Here x <y means x = or x < y. Since the only compact

element is I this lattice is not compactly generated but it is

injective.

Let D be some set. Then P(D) is compactly generated and

<-well founded . In this lattice X <Y means X is finite and

x~~-
Y.

Let D be an inf inite set and D’ be the sublattice of P (D)

consisting of all finite subsets of 0 plus the set D itself. Here

X <Y holds if and only if X = = 0, so it is not an injective

lattice. Note that D’ is (trivially) a <-well founded lattice.

Finally let D be the nonegative integers where the order is

defined n ~ m if and only n > m , plus one extra element J... In

this lattice every element is compact so it is compactly generated ,

but it is not <-well founded .

4.2 We want to investigate to what extent injective and compactly

generated lattices are related to continuous representations. In

one direction this is clarified by the next two theorems.

j 
22
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4.2.1 Theorem. Let (f,g) be a representation between lattices

D and 0’ where D is injective and for every x r D f(B
D
(x)) c B

01 (f(x)).

Then g e D’ C ‘ D.

Let Y 0’ be d irected and assume v ~ B0
(q( [ii)) . It fo11o~is

that f(v) 
< 
f(g (UY)) c Ui hence f(v) 

~ 
y for  some y c Y.  Th is

imp l ie~
; v ~ g (y) hence g(UY) 

i_ Ug (Y) .

4 . 2 . 2 Theorem . Let (f ,g) be a representation between lattices 0

and D’ where D is compactly generated and for every

X £ D f (C
0
(x)) c CD , (f(x)). Then g c D’ C ‘ D.

The proof is similar .

4.3 We consider now the problem in the other direction , namely

assuming a connection or representation is cont inuous in which

way are related the compact elements of the lattices. The key

result is given by the following lemma .

4.3.1 Lemma . Let (f , g )  be a continuous connection sa t i s f y ing

the condit ions f a g r~~ I. Then f(B
0
(g(y))) B01 (y) for arbitrary

y 1 D’ .

Take x < g(y) to show f(x) < 
y.  Let Y c 0’ be directed and

Y E Ui. Then g(y)  ~ g(UY) = U g ( Y ) . Hence there is v Y such

that x ~ cj(v); it follows f(x) IL f ( q ( v ) )  v .

4.3.2 Coroll ary. If D is an injectivc lattice and 0’ is .‘

continuous retraction of D then 0’ is injective .

Let ( f ,g) be the continuous retraction of 0’ into 0. Since

f 0 g = I the preceding theorem applies. If y c D’ then

g(y)  = US~ (g(y)) hence y = f(g(y)) = U f C B ~~~~ y~~ ~ UBD’(y).

23
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4.3.3 Theorem . A lattice D is injective if  and only if it is

a continuous retract ion of P(D).

The l a t t i c e  P ( D )  is i n j e c t i v e  so in case 0 is a Continuous

retraction of P ( D )  4.3.2 applies. Conversely assume 0 is injective

and we define f(X) = Ux for  X c D then (f,B
0
) is a continuous

retraction of 0 into P ( D ) . C lea r ly  f (B~~(y )) y and f is add it ive ,

so we need on ly  to show B
D 

is continuous. For this it is sufficient

to prove t h a t  BD ( U Y )  
~ L J {B D ( Y )  : y £ Y }  whenever Y ~ D is

d i rec ted .  But  Ui  = W v :  There is y c Y and v 
~ 

80 (y )  } which

is also directed set , hence i f  u ( U i  then u ~ v such tha t

v < y for  some y £ Y. I t  fol lows tha t  u r BD
( y ) .

4 . 3 . 4  Theorem . Let ( f ,g )  be a cont inuous  representa t ion  between

D and D ’ . Then f ( B 0
( x ) )  c B0, ( f ( x ) )  and f ( C D

( x ) )  c CD , ( f ( x ) )  fo r

every x c D.

Assume u x; then u < g(f(x)) hence by 4.3.1 f(u) < f(x).
Sim ilar argument if u u c~ x.

4.3.5 Corollary. Let (f,g) be a Continuous closure of D’ into D.

If D is compactly generated then D’ is also compactly generated .

Fu rthermore f ( C ~~(~~(Y))) = CDI (y) for y c D’ .

Let y D ’ and f (x) = y. Then f(x) = f( IiCD
(x)) = Uf(cD xfl C.

Lic D , (f(x)) = 1Jc01 ( y ) .

Now to prove f(C0
( g ( f ( x ) ) )  = C0,(f(x)) we need to consider

only the inclusion from right to left. Let v £ C0,(f(x)); then

g(v) c g(f(x)) and v = f(g(v)) = [Jf(C~~(g(v))). Since v is compact

24



this means v = f ( u )  for some u C~~(~~( v ) ) ~ but then u i C~~(~~(f(x)).

4.3.6 Theorem . A lattice 0 is compactly genera ted i f and onl y

if it is a continuous closure of P(D)

Since P (D) is compactly genera ted in one d i rec tion the

equivalence follows from 4.3.5. In the other direction if we

define f (X) = Lix for x c then (f ,C0) is a continuous closure

of D into P (C0) (see 3.6.1). But P(C0) is a continuous closure

of P(D) as explained in 3.6.2.

4.4 We have obtained characterizations of injective and compactly

generated lattices in terms of continuous retractions and

continuous closures. We present now a partial result that relates

<-well founded lattices and continuous projections.

4.4.1 Theorem. Let D be a cont inuous  projection of D’ . If 0’

is <-well founded then D is also <-well founded.

Let (f,g) be a continuous projection of 0 into D’ . Then

Theorem 4.3.4 applies and f is 1—1. It follows that any infinite

descending sequence in D will induce a corresponding inf inite

descending sequence in D’. Hence D is <-well founded .

4.4.2 Corollary . If 0 is a continuous projection of P(D) then

D is compactly generated and <-well founded .

4.5 We collect in this last section some results on the lattice

of continuous functions. This matter has been considered in [6j

so here we give only an outline of the arguments.

2 5

- --~~~~~~~~~~~~~~ - ~~~ --- - -~~~~~~~~~~~~~~~~ 
- - -



4.5.1 First note that whenever 0 and 0’ are both injective

lattices then D~
_ C ‘ o’ is also an injective lattice. To show

this define functions f where u c~ D and v I D’ . I f  x 1. Du ,v

then f (x) = v in case u x and f ~
(x) = otherwise . Since

D is injec tive it follows that f i D  
C 

D’ . Fur thermore i f
U , V

f ~ 0 
— 0’ and v < f(u) then 

~u ,v 
.< f. Now it is easy to

prove , using the f a c t  that D’ is also injective that for any such

function f we have ~ = ~ ~~~~~ 
v ‘< f(u) 1- .

4.5.2 A similar arqument shows that whenever D and D’ are cor.tpactly

generated then D C 
D’ is also compactly generated . To prove

th i s  d e f i n e  functions g where u £ D and v £ D’. We put g (x) = vu ,v u , .
in case u ~ x and g (x) = otherwise . It follows that in case

— u ,v

f i D -, 0’ and v E f(u) then ~ f. Furthermore if u is

compact in 0 and v is compact in D’ then is compact in 0 c 
• D ’ .

Now it is easy to show (using the fact that both 0 and 0’ are

compactly generated ) that whenever f c 0 
C 0’ then

f = 
~~~~~ 

: v c~ f ( u ) A U £ C
D 

A V £

4.5.3 Since D ccl 
• 0 is a continuous closure of 0 C 

D (see

2.4.4) it follows that in case 0 is injective (compactly generated)

lattice then D ccl ‘ 0 is also injective (compactly generated)

lattice.

4.5.4 For D 
cp 

-. 0 we have a weaker result. Suppose D is

co
~
npactly generated and whenever u c C0 and u’ c u then u ’ c C0

.

Then D CP -‘ D is cc~pactly generated . To prove this define

functions h for U c D such that h (x) = u in case u C. x and
U U —
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h
~
(x) = J .. otherwise. Such functions are always pro j ections.

But if u is compact in D then h
~ 

£ D CP -‘ D and also it is

compact in this lattice. Note that D-~~ -- D is U-closed in

D C -, D (see 2.4.5). It is sufficient to prove now that

whenever f £ D Cf~ D then f = U ft : U c C A h c~ f ] .  For
u D u —

this purpose we show that for arbitrary x L D and V £ CD
( f ( x ) )

there is u ~ C and h C. f such that v C h (x). Since
0 u —  — U

f(x) = Uf(C
D
(x)) there is u r C

D
(x ) such that v ~ f(u) ~ u so

u ’ = f(u) is also compact in 0. Obviously we have v ~a h , (x)

so we need onl y to show h , c f .  Now if for  some y £ D we have

~ y and h
~~,

( y)  = u ’ then u ’ = f ( u ’)  c~ f ( y ) .

4 . 5 . 5  F i n a l l y  we consider a l a t t ice  D in which there is an i n f i n i t e

sequence of elements u 1,. . . , u , .. .  where each U .  is compact ,

~ 
u~~~1 and u~ ~ u~~~1. Let v some f i x e d  compact e l emen t  i n  0 ,

~i ~J. and put 
~~~ 

= 
~~ 

(see 4 . 5 . 2 ) .  Those f u n c t i o n s  a re  a l l

compact in D c D 1 g ~~~1 ~ q~ and q~~~ � hence D ~~~
-- -

~~~~ D is

not <—well  founded . In p a r t i c u l a r  P ( . )  - P ( ~~) is not a

continuous projection of P ( w ) .
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